8.5 Solving Exponential Equations

A One-to-one property	Ex 1. Solve the following exponential equations.
The exponential function is one-to-one function. So:	a) $2^x = 64$
$a^{x} = a^{y} \iff x = y$ $a > 0, a \neq 1, x \in R, y \in R,$	b) $10^{2x-3} = 0.0001$
	c) $2^{-x} = \sqrt[5]{16}$
	d) $8^x = \sqrt[3]{0.0625}$
B Change of Variable	
Sometimes, <i>changing of the variable</i> may help solving the exponential equation. For example:	
$a^x = y; y > 0$	
Ex 2. Use the change of variable method to solve each of the following exponential equations.	c) $\frac{2^x - 2^{-x}}{2^x + 2^{-x}} = -\frac{63}{65}$
a) $2^x + 2^{-x} = 4.25$	
b) $5 \cdot 2^x - 4^x + 24 = 0$	d) $2^{x+1} + 2^{2x} = 2^x + 2 + \sqrt{2}$

C Logarithms	Ex 3. Solve each equation using logarithms.
Sometimes, <i>logarithms</i> are needed in order to solve exponential equations.	a) $2^{3x-1} = 5$
	b) $3^{x-1} = 4^{x+1}$
D Applications	
Many <i>applications</i> are related to solving exponential equations.	
Ex 4. A species of bacteria doubles each 10 minutes. The initial number of bacteria is 200.	Ex 5. A 100 g sample of plutonium-238 has a half-life of 88 years.
a) Find the exponential function describing the bacteria population growth.	a) Find the exponential function describing the radioactive decay.
b) Find the bacteria population after one hour.	b) Find the mass of radioactive source after 10 years.
c) Find the time (in minutes) after which the bacteria population is 123456.	c) Find the time (in years) after which the mass of the radioactive source will be $3.21 g$.

Reading: Nelson Textbook, Pages 480-484 **Homework**: Nelson Textbook, Page 485: #5, 7, 8, 10, 12, 14, 15, 16, 17